Rainbow connections for planar graphs and line graphs
نویسندگان
چکیده
An edge-colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) = 2 is NP-Complete. It is known that deciding whether a given edge-colored graph is rainbow connected is NP-Complete. We will prove that it is still NP-Complete even when the edge-colored graph is a planar bipartite graph. We also give upper bounds of the rainbow connection number of outerplanar graphs with small diameters. A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. It is known that deciding whether a given vertex-colored graph is rainbow vertex-connected is NP-Complete. We will prove that it is still NP-Complete even when the vertex-colored graph is a line graph.
منابع مشابه
Complexity of Rainbow Vertex Connectivity Problems for Restricted Graph Classes
A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a shortest path which is vertex rainbow between every pair of its vertices. We consider the comp...
متن کامل$n$-Array Jacobson graphs
We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملTotal $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1110.3147 شماره
صفحات -
تاریخ انتشار 2011